您好、欢迎来到现金彩票网!
当前位置:dafa888娱乐场 > 概略浓度 >

环形路上的多次相遇问题 我要公式与各种例题答案 快快快 如果好

发布时间:2019-11-23 14:46 来源:未知 编辑:admin

  行程问题是小学数学中经常遇到的,解决起来往往有些困难,因为还没有学习方程,所以有些题目很不好理解,利用单位1解决问题,这里举一些例子,由浅入深,结合方程的解法,同学们自己比较一下。

  行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

  流水问题:顺水行程=(船速+水速)×顺水时间 逆水行程=(船速-水速)×逆水时间

  1、一列客车从甲地开往乙地,同时一列货车从甲地开往乙地,当货车行了180千米时,客车行了全程的七分之四;当客车到达乙地时,货车行了全程的八分之七。甲乙两地相距多少千米?

  分析:此题中运用了单位1,用到了比例问题,我们要熟练掌握比例,对于路程、速度和时间之间的关系,一定要清楚,在速度或时间一定时,路程都和另外一个量成正比例,当路程一定时,速度和时间成反比例,这个是基本常识。

  2、甲、乙两车同时从A、B两地相对开出,2小时相遇。相遇后两车继续前行,当甲车到达B地时,乙车离A地还有60千米,一直两车速度比是3:2。求甲乙两车的速度。

  3、甲、乙两车分别同时从A、B两成相对开出,甲车从A城开往B城,每小时行全程的10%,乙车从B城开往A城,每小时行8千米,当甲车距A城260千米时,乙车距B地320千米。A、B两成之间的路程有多少千米?

  4、一客车和一货车同时从甲乙两地相对开出,经过3小时相遇,相遇后仍以原速继续行驶,客车行驶2小时到达乙地,此时货车距离甲地150千米,求甲乙两地距离?

  5、甲乙两车同时分别从两地相对开出,5小时正好行了全程的2/3,甲乙两车的速度比是5:3。余下的路程由乙车单独走完,还要多少小时?

  分析:此题和上一例题有异曲同工之处,都是把甲乙每小时行的路程看作一个整体,然后根据比例分别求出甲乙的速度(用份数表示),从而解决问题,关键之处就是把甲乙看作一个整体,这和工作问题,甲乙的工作效率和是一个道理。

  6、甲,乙两辆汽车同时从东站开往西站,甲车每小时比乙车多行12千米。甲车行驶4.5小时到达西站后没有停留,立即从原路返回,在距西站31.5千米和乙车相遇。甲车每小时行多少千米?

  7、从甲地去乙地,如车速比原来提高1/9,就可比预定的时间提前20分钟赶到,如先按原速行驶72千米,再将车速比原来提高1/3,就比预定时间提前30分钟赶到。甲,乙两地相距多少千米?

  第二次行驶完72千米后,原来的速度和提高后的速度比为1:(1+1/3)=3:4

  将行驶完72千米后的时间看作单位1,那么这一段用的时间为(1/2)/(1-3/4)=2小时

  8、清晨4时,甲车从A地,乙车从B地同时相对开出,原计划在上午10时相遇,但在6时30分,乙车因故停在中途C地,甲车继续前行350千米在C地与乙车相遇,相遇后,乙车立即以原来每小时60千米的速度向A地开去。问:乙车几点才能到达A地?

  9、AB两地相距60千米,甲车比乙车先行1小时从A地出发开往B地,结果乙车还比甲车早30分到达B地,甲乙两车的速度比是2:5,求乙车的速度。

  如果甲不比乙车先行1小时,那么乙车要比甲车早1+30/60=1.5小时到达B地

  10、小刚很小明同时从家里出发相向而行。小刚每分钟走52米,小明每分钟走70米,两人在途中A处相遇。若小刚提前4分钟出发,且速度不变,小明每分钟走90米,则两人仍在A处相遇。小刚和小明两人的家相距多少米?

  11、客货两车分别从甲乙两地同时相对开出,5小时后相遇,相遇后两车仍按原速度前进,当他们相距196千米时客车行了全程的三分之二,货车行了全程的80%,问货车行完全程用多少小时 ?

  客货两车分别从甲乙两地相对开出,相遇后两车继续到达对方终点后,两车立即返回,又在途中相遇,两次相遇的地点相距3000米。已知货车的速度是客车速度三分之二,求甲乙两地距离是多少米?(要算式和解题过程)

  因为是2次相遇,所以两车走的路程一共是3倍甲乙两地距离,也就是1x3=3

  12、甲、乙两辆车同时分别从两个城市相对开出,经过3小时,两车距离中点18千米处相遇,这时甲车与乙车所行的路程之比是2:3.求甲乙两车的速度各是多少?

  13、甲乙两车同时从AB两地出发,相向而行,甲与乙的速度比是4:5。两车第一次相遇后,甲的速度提高了4分之一,乙的速度提高了3分之一,两车分别到达BA两地后立即返回。这样,第二次相遇点距第一次相遇点48KM,AB两地相距多少千米?

  14、甲从A地往B地,乙丙从B地行往A地,三人同时出发。甲首先遇乙,15分钟后又遇丙。甲每份走70m,乙走60m丙走50m。问AB两地距离、

  15、甲乙两人同时从山脚开始爬山,到达山顶后就立即下山,甲乙两人下山的速度都是各自上山速度的二倍,甲到山顶时乙距离山顶还有500米,甲回到山脚时,乙刚好下到半山腰,求从山脚到山顶的路程。

  16、汽车从A地到B地,如果速度比预定的每小时慢5千米,到达时间将比预定的多1/8,如果速度比预定的增加1/3,到达时间将比预定的早1小时。求A,B两地间的路程?

  第二次速度增加1/3,实际速度与原来的速度之比为为(1+1/3):1=4:3

  17、两辆汽车同时从东、西两站相对开出,第一次在离东站45千米的地方相遇,之后两车继续以原来的速度前进,各自到站后都立即返回,又在距离中点东侧9千米处相遇,两站相距多少千米?

  1、已知甲乙两船的船速分别是24千米/时和20千米/时,两船先后从汉口港开出,乙比甲早出1小时,两船同时到达目的地A,问两地距离?

  2、某校组织学生排队去春游,步行速度为每秒1米,队尾的王老师以每秒2.5米的速度赶到排头,然后立即返回队尾,共用10秒,求队伍的长度是多少米?、

  3、在一个圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到B点,又过8分钟两人再次相遇,甲、乙环形一周各需多少分钟?

  4、甲乙两人环湖同向竞走,环湖一周是400米,乙每分钟走80米,甲的速度是乙的一又四分之一倍,问甲什么时候追上乙?

  5、猎犬发现距它8米远的地方优质本报的野兔子,立刻追。猎犬包6步的路程野兔要跑11步,但是兔子跑的4步的时间猎犬只能奔跑3步。猎犬至少要跑多少米才能追上野兔?

  所以猎犬追上野兔的时间=8/(9/11)×1=88/9米(必须乘以单位1,否则算式没有意义)

  6、一只野兔跑出85步猎犬才开始追它,兔子跑8步的路程猎犬只需跑3步,猎犬跑4步的时间野兔能跑9步。问猎犬至少要跑多少步才能追上兔子?

  我们在日常做题的过程中,经常会遇到求几点几分时针和分针所称的角度,还有时针和分针所成多少度角时,是几点几分。解此类题,似乎与追及问题格格不入,但是我们恰恰可以看作是追及问题的一个变形。首先我们对钟面熟悉以后,知道钟面被分作60个小格,每个小格所对的圆心角的度数=360/60=6度,分针每分钟走1格,时针每分钟走5/60=1/12格,由此我们在解题之前就知道了这些隐含条件,就可以把钟面看作是环形跑道,时针速度慢,分针速度快,在解题之前,大致画一个图形,就知道大概角度,然后判断路程差为多少,因为速度差我们已经知道了,是1-1/12=11/12格,将来我们学会了相对运动,就可以把时针看作参照物,分针的速度变为11/12格/分,问题变得更加简单。看下面的例题:

  此题中,7点时,分针和时针相差35格,题目要求成30度角及相差30/6=5格时钟表的时间,那就是分针以11/12格/分的速度追赶时针,相差5格,也就是路程上追上了30格,求的就是分针以11/12格/分走30格的时间,第二次成30度就是分针超过时针5格即分针以11/12格/分的速度走的35+5=40格的时间

  2、张华出去办事两个多小时,出门时他看了看钟,到家时又看了看钟,发现时针和分针互相换了位置,他离家多长时间?

  展开全部环形路上的多次相遇问题,最根本的是相遇时他们的路程差是环形路的周长,那时要看是相向而是还是同向而行,相向而行,相遇时间等于环形路长除以速度差,同向而行相遇时间等于环形路长除以速度和。

  例1.甲乙二人在同一条椭圆形跑道上进行跑步训练,他们同时从同一地点出发,沿相反方向跑。每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时乙的速度是甲的速度的2/3,甲跑第二圈时速度比第一圈提高了1/3,乙跑第二圈时速度提高了1/5,已知甲、乙二人第二次相遇点距第一次相遇点190米,这条椭圆形跑道长多少米?

  解:这道题很难,所以先做分析如下:我们要求的是椭圆形跑道长多少米?而唯一与所求有关的数值就是甲、乙二人第二次相遇点距第一次相遇点190米。所以,我们只要先找出第一次相遇点距出发点(甲跑的方向)路程,同样再找出第二次相遇点距出发点(甲起跑的方向)路程,则两者之差就等于190米。同时需要理解的是:第一次相遇甲乙所跑的路程之和恰为跑道之长;甲乙所用时间相同。第二次相遇时,甲乙各自所用的总时间也相同,两者跑的路程为三圈(即各自跑一圈,两者跑的之和一圈)。

  设这条椭圆形跑道长x米,甲人第一圈的速度为y ,则乙人第一圈的速度为 y2/3 ;甲人第二圈的速度为y(1+1/3)=4y/3 ,则乙人第二圈的速度为 y2/3(1+1/5) =4y/5;又设第一次相遇甲乙所用时间为a,第二次相遇时甲乙增速后所用时间分别为为b和c。 a=x÷(y+y2/3) =x×(3/5y)=3x/5y ,则第一次相遇点距出发点(甲跑的方向)路程:ya= y×3x/5y=3x/5 。 甲跑完一圈所用的时间:x/y , 乙跑完一圈所用的时间:x/(y2/3) 。则有:x/y+b=x/(y2/3)+c , b4y/3+c4y/5=x 。由上述两式得:c=5x/32y ,

  展开全部环形路上的多次相遇问题,最根本的是相遇时他们的路程差是环形路的周长,那时要看是相向而是还是同向而行,相向而行,相遇时间等于环形路长除以速度差,同向而行相遇时间等于环形路长除以速度和。追问有例子吗追答1.甲乙二人在400米的环形跑道上,同时从点同向而行,甲每秒走6米,乙每秒走4米,多少时间他们第二次相遇?400*2(6-4)=400秒

http://ratedpaper.com/gailuenongdu/885.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有